Страница 2 из 4 Подвесной кабель: распространенные конструкции Необходимость организации подвеса волоконно-оптических кабелей обусловила разработку конструкций, предназначенных именно для этого вида инсталляции. При этом учитывалось разнообразие климатических, природных, техногенных и прочих факторов, сокращающих срок службы кабеля. К таким показателям можно отнести температурные колебания - рабочий диапазон температур для большинства кабелей составляет от -40°С до +70°С, а также длительное воздействие солнечных лучей, соляной туман, загрязнение воздуха выхлопами, длительное воздействие ветровых нагрузок и вибраций. Проводятся исследования с целью создания кабелей, обладающих повышенной устойчивостью к действию радиоактивного излучения. Ведущие производители кабельной продукции реагируют на возрастание спроса на подвесные волоконно-оптические кабели, периодически дополняя существующую гамму решений новыми разработками, отвечающими текущим потребностям. Градация подвесных волоконно-оптических кабелей представлена в виде схемы выше. Рассмотрим основные конструкции подвесных волоконно-оптических кабелей связи. По типу инсталляции кабеля конструкции можно разделить на три семейства: самонесущие, встроенные в сердечник силового кабеля и навиваемые на трос грозозащиты или фазный провод. В свою очередь, каждое семейство делится на типы в зависимости от конструкции сердечника: со свободно расположенными оптическими модулями (loose tube), с центральным единым модулем, содержащим пучки оптических волокон (monotube, unitube, lightpack) или модули с оптическими волокнами (flextube), а также с профилированным сердечником (см. "СиТ" №11, 2004). Самонесущие кабели Самонесущие волоконно-оптические кабели имеют два варианта исполнения: когда опорный элемент не вынесен за пределы сердечника кабеля (поперечное сечение кабеля -круглое) и когда опорный элемент (несущий трос или стекло-пластиковые прутки) вынесен за пределы кабельного сердечника (кабель типа "8"). Наибольшее распространение в нашей стране приобрели полностью диэлектрические самонесущие подвесные кабели [ADSS], хорошо зарекомендовавшие себя во многих регионах с различными условиями эксплуатации. Следует отметить, что при увеличении толщины слоя упрочняющих арамидных нитей, находящихся под внешней полиэтиленовой оболочкой (а также сечения проволок опорного элемента для кабелей типа "8") возрастает стойкость кабеля к растягивающим усилиям, и таким образом увеличивается расчетная длина пролета между опорами. При уменьшении толщины слоя арамидных нитей, что приемлемо для коротких пролетов, соответственно снижается и стоимость кабеля. Сердечники самонесущих кабелей могут иметь различные конструкции. Перечислим наиболее распространенные. Кабели с профилированным сердечником, содержащим оптические волокна или модули, которые, в свою очередь, содержат оптические волокна. Такие конструкции позволяют обеспечить не только высокую устойчивость к усилиям на растяжение, но и на раздавливание, что может оказаться существенным при использовании определенных типов кабельной арматуры. Loosetube - конструкция со скрученными оптическими модулями, содержащими свободно уложенные оптические волокна. Эта конструкция позволяет сосредоточить основное внимание на устойчивости к растягивающим усилиям.
Рисунок 5. Самонесущий оптический кабель с гофрированной стальной броней (MASS) со свободной укладкой модулей.
Рисунок 6. Оптический кабель типа "8" со стеклопластиковым прутком в качестве несущего элемента. В последнее время на смену описанным выше приходит конструкция monotube. Сердечник кабеля такой конструкции содержит всего один оптический модуль несколько большего диаметра, чем в loose tube, который расположен в центре. Внутри модуля находятся пучки оптических волокон, каждый из которых скреплен обмоточной нитью или лентой. Сердечник такого кабеля не содержит силовых элементов - они вынесены в оболочку. Несмотря на существенный недостаток -некоторое неудобство идентификации волокон - популярность этих кабелей постепенно возрастает вследствие значительно меньшего диаметра (следовательно, и парусности, массы и т.д.), то есть значительного улучшения массогабаритных характеристик при существенном сокращении затрат на материалы, что, естественно, отражается на цене.
Рисунок 7. Оптический кабель типа "8" со стальным тросом в качестве несущего элемента.
Рисунок 8. Оптический кабель типа "8" со стальным тросом в качестве несущего элемента и бронепокровом из круглых стальных оцинкованных проволок. Разрешить сложности с распознаванием оптических волокон при большом их количестве внутри модуля monotube позволит, очевидно, применение ленточных элементов. Такая технология позволит выпускать кабели monotube большой емкости. Волоконно-оптические кабели, встроенные в трос грозозащиты Весьма широкое распространение в мировой практике получили кабели типа 0PGW, встроенные в трос грозозащиты или фазный провод, причем возможны различные вариации конструктивного исполнения кабелей этого типа. Очевидным недостатком таких линий является повышенная вероятность повреждения троса и кабеля ударами молний, что нередко происходит в грозоопасных районах, а также вследствие коротких замыканий на ЛЭП, вызванных разными причинами. Чтобы избежать подобных ситуаций, приводящих к перерывам в работе линий связи, была разработана специальная технология производства троса и кабеля, подвешиваемого на ЛЭП. Благодаря этой технологии при ударе молнии температура в кабеле не превышает 17О-2ОО°С, что безопасно для его жизнестойкости. Следует отметить, что такой кабель (и трос) существенно дороже обычного, однако он повреждается гораздо реже подземного. Трос состоит из проволок. Они могут быть стальными или алюминиевыми, но наибольшее распространение получили стальные, покрытые алюминием (алюминированные) и алдреевые - из сплава алюминия с магнием, кремнием и железом. Выбор материала и диаметра проволок зависит как от размера оптического кабеля, так и от эксплуатационных требований к физико-механическим параметрам троса. Оптические кабели типа 0PGW могут быть выполнены с гибкими полимерными или жесткими металлическими модулями. Кабели типа OPGW с гибкими полимерными оптическими модулями Конструкция сердечника может быть с центральным модулем (monotube) и многомодульной - это, как правило, структура loose tube или с оптическими волокнами в пазах профилированного сердечника, или же с оптическими модулями в пазах профилированного сердечника. В кабелях модуль, содержащий оптические волокна, расположен в центре. В многомодульных конструкциях модули скручиваются в повив вокруг центрального опорного элемента круглого сечения. Максимальное количество модулей - шесть. Если их меньше, то повив добавляется до шести корделями заполнения, причем его диаметр аналогичен диаметру оптических модулей. Сердечник кабеля - центральный модуль или повив оптических модулей с корделями заполнения и центральным опорным элементом - заключается в полимерную или металлическую оболочку. Свободное пространство внутри модуля и между модулями в сердечнике заполняется гидрофобным компаундом, препятствующим проникновению влаги к оптическим волокнам. Поверх оболочки накладываются проволоки троса. Трос может быть одноповивный или чаще - двухповивный. Во всех случаях он представляет собой комбинацию двух типов проволок: стальных алюминированных, обеспечивающих механическую прочность троса, и алдреевых, обладающих низким сопротивлением и высокой термостойкостью. Многомодульная конструкция также может содержать оптические модули, изготовленные из полимера, в пазах профилированного сердечника из алюминия или его сплавов. Кабели типа OPGW с жесткими металлическими оптическими модулями Конструкция сердечника отличается от конструкции сердечников с полимерными модулями. Число металлических модулей в кабеле - от одного до четырех. Трубка оптического модуля - стальная или стальная алюминированная (из нержавеющей стали). Кабель может содержать единственный модуль с оптическими волокнами, расположенный в центре повивов проволок. Если в кабеле имеются один или два модуля, то они располагаются в повиве, который дополняется стальными алюминированными проволоками; такая же проволока в центре выполняет функцию центрального опорного элемента. При наличии трех или четырех модулей они скручиваются между собой и располагаются в центре кабеля. В одних конструкциях поверх целиком металлического сердечника непосредственно накладываются проволоки троса одним или более повивами - сначала стальные алюминирован-ные, затем алдреевые большего сечения. В других конструкциях сердечник заключается в трубку из сегментных алдреевых проволок, поверх которой следуют один или два повива проволок троса, комбинирующихся из стальных алюминированных и алдреевых. Такие конструкции кабелей позволяют выдерживать расчетные нагрузки на разрыв в диапазоне 40-120 кН. |