Страница 68 из 85 2.1.2. Операции со списками при последовательном хранении При выборе метода хранения линейного списка следует учитывать, какие операции будут выполняться и с какой частотой, время их выполнения и объем памяти, требуемый для хранения списка. Пусть имеется линейный список с целыми значениями и для его хранения используется массив d (с числом элементов 100), а количество элементов в списке указывается переменной l. Реализация указанных ранее операций над списком представляется следующими фрагментами программ которые используют объявления: float d[100]; int i,j,l; 1) печать значения первого элемента (узла) if (i<0 || i>l) printf("\n нет элемента"); else printf("d[%d]=%f ",i,d[i]); 2) удаление элемента, следующего за i-тым узлом if (i>=l) printf("\n нет следующего "); l--; for (j=i+1;j<="1" || i>=l) printf("\n нет соседа"); else printf("\n %d %d",d[i-1],d[i+1]); 4) добавление нового элемента new за i-тым узлом if (i==l || i>l) printf("\n нельзя добавить"); else { for (j=l; j>i+1; j--) d[j+1]=d[j]; d[i+1]=new; l++; } 5) частичное упорядочение списка с элементами К1,К2,...,Кl в список K1',K2',...,Ks,K1,Kt",...,Kt", s+t+1=l так, чтобы K1'= K1.
{ int t=1; float aux; for (i=2; i<=l; i++) if (d[i]=2; j--) d[j]=d[j-1]; t++; d[i]=aux; } }
Количество действий Q, требуемых для выполнения приведенных операций над списком, определяется соотношениями: для операций 1 и 2 - Q=1; для операций 3,4 - Q=l; для операции 5 - Q=l*l. Заметим, что вообще операцию 5 можно выполнить при количестве действий порядка l, а операции 3 и 4 для включения и исключения элементов в конце списка, часто встречающиеся при работе со стеками, - при количестве действий 1. Более сложная организация операций требуется при размещении в массиве d нескольких списков, или при размещении списка без привязки его начала к первому элементу массива. |