Беспроводные сети - как это работает
Страница 6. Физический уровень протокола 802.11g



Физический уровень протокола 802.11g

Стандарт IEEE 802.11g является логическим развитием стандарта 802.11b/b+ и предполагает передачу данных в том же частотном диапазоне, но с более высокими скоростями. Кроме того, стандарт 802.11g полностью совместим с 802.11b, то есть любое устройство 802.11g должно поддерживать работу с устройствами 802.11b. Максимальная скорость передачи в стандарте 802.11g составляет 54 Мбит/с.

При разработке стандарта 802.11g рассматривались несколько конкурирующих технологий: метод ортогонального частотного разделения OFDM, предложенный к рассмотрению компанией Intersil, и метод двоичного пакетного сверточного кодирования PBCC, опционально реализованный в стандарте 802.11b и предложенный компанией Texas Instruments. В результате стандарт 802.11g основан на компромиссном решении: в качестве базовых применяются технологии OFDM и CCK, а опционально предусмотрено использование технологии PBCC.

Ортогональное частотное разделение каналов с мультиплексированием

Распространение сигналов в открытой среде, коей является радиоэфир, сопровождается возникновением всякого рода помех, источником которых служат сами распространяемые сигналы. Классический пример такого рода помех — эффект многолучевой интерференции сигналов, заключающийся в том, что в результате многократных отражений сигала от естественных преград один и тот же сигнал может попадать в приемник различными путями. Но подобные пути распространения имеют и разные длины, а потому для различных путей распространения ослабление сигнала будет неодинаковым. Следовательно, в точке приема результирующий сигнал представляет собой суперпозицию (интерференцию) многих сигналов, имеющих различные амплитуды и смещенных друг относительно друга по времени, что эквивалентно сложению сигналов с разными фазами.

Следствием многолучевой интерференции является искажение принимаемого сигнала. Многолучевая интерференция присуща любому типу сигналов, но особенно негативно она сказывается на широкополосных сигналах. Дело в том, что при использовании широкополосного сигнала в результате интерференции определенные частоты складываются синфазно, что приводит к увеличению сигнала, а некоторые, наоборот, — противофазно, вызывая ослабление сигнала на данной частоте.

Говоря о многолучевой интерференции, возникающей при передаче сигналов, различают два крайних случая. В первом случае максимальная задержка между различными сигналами не превосходит времени длительности одного символа и интерференция возникает в пределах одного передаваемого символа. Во втором случае максимальная задержка между различными сигналами больше длительности одного символа, а в результате интерференции складываются сигналы, представляющие разные символы, и возникает так называемая межсимвольная интерференция (Inter Symbol Interference, ISI).

Наиболее отрицательно на искажение сигнала влияет межсимвольная интерференция. Поскольку символ — это дискретное состояние сигнала, характеризующееся значениями частоты несущей, амплитуды и фазы, то для различных символов меняются амплитуда и фаза сигнала, поэтому восстановить исходный сигнал крайне сложно.

Чтобы избежать, а точнее, частично компенсировать эффект многолучевого распространения, используются частотные эквалайзеры, однако по мере роста скорости передачи данных либо за счет увеличения символьной скорости, либо из-за усложнения схемы кодирования, эффективность использования эквалайзеров падает.

В стандарте 802.11b с максимальной скоростью передачи 11 Мбит/с при использовании CCK-кодов схемы компенсации межсимвольной интерференции вполне успешно справляются с возложенной на них задачей, но при более высоких скоростях такой подход становится неприемлемым.

Поэтому при более высоких скоростях передачи применяется принципиально иной метод кодирования данных – ортогональное частотное разделение каналов с мультиплексированием (Orthogonal Frequency Division Multiplexing, OFDM). Идея данного метода заключается в том, что поток передаваемых данных распределяется по множеству частотных подканалов и передача ведется параллельно на всех этих подканалах. При этом высокая скорость передачи достигается именно за счет одновременной передачи данных по всем каналам, а скорость передачи в отдельном подканале может быть и невысокой.

Поскольку в каждом из частотных подканалов скорость передачи данных можно сделать не слишком высокой, это создает предпосылки для эффективного подавления межсимвольной интерференции.

При частотном разделении каналов необходимо, чтобы ширина отдельного канала была, с одной стороны, достаточно узкой для минимизации искажения сигнала в пределах отдельного канала, а с другой — достаточно широкой для обеспечения требуемой скорости передачи. Кроме того, для экономного использования всей полосы канала, разделяемого на подканалы, желательно как можно более плотно расположить частотные подканалы, но при этом избежать межканальной интерференции, чтобы обеспечить полную независимость каналов друг от друга. Частотные каналы, удовлетворяющие перечисленным требованиям, называются ортогональными. Несущие сигналы всех частотных подканалов (а точнее, функции, описывающие эти сигналы) ортогональны друг другу.

Важно, что хотя сами частотные подканалы могут частично перекрывать друг друга, ортогональность несущих сигналов гарантирует частотную независимость каналов друг от друга, а, следовательно, и отсутствие межканальной интерференции (рис. 3).

Рис. 3. Пример перекрывающихся частотных каналов с ортогональными несущими.

Рассмотренный способ деления широкополосного канала на ортогональные частотные подканалы называется ортогональным частотным разделением с мультиплексированием (OFDM). Одним из ключевых преимуществ метода OFDM является сочетание высокой скорости передачи с эффективным противостоянием многолучевому распространению. Если говорить точнее, то сама по себе технология OFDM не устраняет многолучевого распространения, но создает предпосылки для устранения эффекта межсимвольной интерференции. Дело в том, что неотъемлемой частью технологии OFDM является охранный интервал (Guard Interval, GI) — циклическое повторение окончания символа, пристраиваемое в начале символа (рис. 4).

Рис. 4. Охранный интервал GI.

Охранный интервал является избыточной информацией и в этом смысле снижает полезную (информационную) скорость передачи, но именно он служит защитой от возникновения межсимвольной интерференции. Эта избыточная информация добавляется к передаваемому символу в передатчике и отбрасывается при приеме символа в приемнике.

Наличие охранного интервала создает временные паузы между отдельными символами, и если длительность охранного интервала превышает максимальное время задержки сигнала в результате многолучевого распространения, то межсимвольной интерференции не возникает (рис. 5).

Рис. 5. Избежание межсимвольной интерференции за счет использования охранных интервалов.

При использовании технологии OFDM длительность охранного интервала составляет одну четвертую длительности самого символа. При этом сам символ имеет длительность 3,2 мкс, а охранный интервал — 0,8 мкс. Таким образом, длительность символа вместе с охранным интервалом составляет 4 мкс.

 
« Предыдущая статья