Страница 5 из 6
Обработка деревьев Наиболее хитрая часть обработки деревьев в SQL это нахождение способа конвертировать модель матрицы смежности в модель вложенных множеств в пределах структуры чистого SQL. Было бы довольно просто загрузить таблицу матрицы смежности в программу, и затем использовать рекурсивную программу преобразование дерева из учебника колледжа, чтобы построить модель вложенных множеств. Честно говоря, такое преобразованиме дерева могло бы быть быстрее чем то, что я собираюсь показать Вам. Но я хочу сделать это в чистом SQL, чтобы доказать следующее: Вы можете делать на декларативном языке то же, что Вы можете делать на процедурном языке. Поскольку это обучающее упражнение, я буду объяснять с болезненной детальностью. Классический подход к решению проблемы состоит в том, чтобы брать самое простой случай проблемы, и смотреть, можете ли Вы применять его к более сложным случаям. Если дерево не имеет узлов, то преобразование просто - ничего не делать. Если дерево имеет один узел, то преобразование простое - устанавливают левое значение в 1 и правое значение в 2. Природа матрицы смежности такова, что Вы можете двигаться только по одному уровню одновременно, так что давайте посмотрим на дерево с двумя уровнями - корень и непосредственные потомки. Таблица модели смежности напоминала бы следующее: CREATE TABLE Personnel (emp CHAR(10) NOT NULL PRIMARY KEY, boss CHAR(10));
Personnel
empboss ================= 'Albert'NULL 'Bert''Albert' 'Charles''Albert' 'Diane''Albert'
Давайте поместим модель вложенных множеств в ее собственную рабочую таблицу: CREATE TABLE WorkingTree( emp CHAR (10), boss CHAR(10), lft INTEGER NOT NULL DEFAULT 0, rgt INTEGER NOT NULL DEFAULT 0);
Из предидущих абзацев этой статьи, Вы знаете, что корень дерева имеет левое значение 1, и что правое значение является удвоенным числом узлов в дереве. Пусть в рабочей таблице столбец boss будет всегда содержать ключевое значение корня первоначального дерева. В действительности, это будет имя вложенного множества: INSERT INTO WorkingTree --convert the root node SELECT P0.boss, P0.boss, 1, 2 * (SELECT COUNT(*) + 1 FROM Personnel AS P1 WHERE P0.boss = P1.boss) FROM Personnel AS P0;
Теперь, Вы должны добавить потомков в таблицу вложенных множеств. Первоначальный босс останется тот же самый. Порядок потомков - естественный порядок ключа; в данном случае emp char(10): INSERT INTO WorkingTree --convert the children SELECT DISTINCT P0.emp, P0.boss, 2 * (SELECT COUNT(DISTINCT emp) FROM Personnel AS P1 WHERE P1.emp < P0.emp AND P0.boss IN (P1.emp, P1.boss)), 2 * (SELECT COUNT(DISTINCT emp) FROM Personnel AS P1 WHERE P1.emp < P0.emp AND P0.boss IN (P1.boss, P1.emp)) + 1 FROM Personnel AS P0;
Фактически, Вы можете использовать эту процедуру, чтобы конвертировать модель матрицы смежности в лес деревьев, каждое из которых - модель вложенных множеств, идентифицированная ее корневым значением. Таким образом, генеалогическое дерево Альберта - набор строк, которые имеют Альберта как предка, генеалогическое дерево Берта - набор строк, которые имеют Берта как предка, и так далее. (Эта концепция иллюстрирована в рисунках 1 и 2. Поскольку первоначальная таблица матрицы смежности повторяет нелистовые узлы, некорневые узлы, в столбцах emp и boss, таблица WorkingTree дублирует узлы как корень в одном дереве и как потомок в другом. Запрос также будет странно себя вести со значением NULL в столбце boss первоначальной таблицы матрицы смежности, так что Вы будете должны очистить таблицу WorkingTree следующим запросом: DELETE FROM WorkingTree WHERE boss IS NULL OR emp IS NULL;
|