Для начала заметим, что элемент a кольца Zn обратим тогда и только тогда, когда НОД(a,n)=1. То есть ответ есть не всегда. Из определения обратного элемента прямо следует алгоритм. ПсевдокодНА ВХОДЕ: а из Zn. НА ВЫХОДЕ: обратный к а в кольце, если он существует.
1. Использовать расширенный алгоритм Евклида для нахождения x и y, таких что ax + ny = d, где d=НОД(a,n). 2. Если d > 1, то обратного элемента не существует. Иначе возвращаем x.
Исходник на Си/* Author: Pate Williams (c) 1997 */
#include <stdio.h>
void extended_euclid(long a, long b, long *x, long *y, long *d) /* вычисление a * *x + b * *y = gcd(a, b) = *d */ { long q, r, x1, x2, y1, y2; if (b == 0) { *d = a, *x = 1, *y = 0; return; }
x2 = 1, x1 = 0, y2 = 0, y1 = 1; while (b > 0) { q = a / b, r = a - q * b; *x = x2 - q * x1, *y = y2 - q * y1; a = b, b = r; x2 = x1, x1 = *x, y2 = y1, y1 = *y; }
*d = a, *x = x2, *y = y2; }
long inverse(long a, long n) /* вычисление инверсии модуля n */ { long d, x, y; extended_euclid(a, n, &x, &y, &d); if (d == 1) return x; return 0; }
// главная фукнция int main(void) { long a = 5, n = 7; printf("инверсия %ld modulo %2ld is %ld\n", a, n, inverse(a, n)); a = 2, n = 12; printf("инверсия %ld modulo %2ld is %ld\n", a, n, inverse(a, n)); return 0; }
|